астрономия

17 УНИКАЛЬНЫХ ФАКТОВ О ВСЕЛЕННОЙ

Масса Солнца составляет 99 процентов общей массы вещества в Солнечной системе.

В нашей Вселенной существует планета под названием HD189733b, где идут дожди из стекла.

Масса Солнца составляет 99 процентов общей массы вещества в Солнечной системе.

В нашей Вселенной существует планета под названием HD189733b, где идут дожди из стекла.

Путешествие фотона от ядра Солнца до его поверхности занимает 170 тысяч земных лет.

И ещё 8 минут потребуется на то, чтобы фотон, оторвавшись от поверхности Солнца, достиг наших глаз.

В созвездии Орла существует газовое облако, содержащее такое количество алкоголя, которого хватило бы для производства 200 септиллионов (1024) литров пива.

Навозные жуки, столь примитивные на вид создания, оказывается, могут использовать для навигации свое положение относительно Млечного Пути.

В 33 световых годах от Земли находится экзопланета (так называют планеты вне Солнечной системы), поверхность которой полностью покрыта горящим льдом.

Во Вселенной каждый день появляется около 275 миллионов новых звезд.

Гора Олимп, самая высокая в Солнечной Системе, находится на Марсе. Она в 3 раза выше Эвереста и буквально пронзает насквозь атмосферу Марса.

Кроме того, она обладает гигантской шириной: если бы мы встали на краю ее кратера, основание вулкана оказалось бы за линией горизонта.

Вращение Земли замедляется примерно на 17 милисекунд каждое столетие.

Один день на Венере длится дольше, чем год, поскольку один оборот вокруг Солнца планета совершает быстрее, чем оборот вокруг собственной оси.

В пределах нашей галактики существует небесное тело, представляющее собой цельный алмаз и превосходящее размером Землю.

Масса одной чайной ложки вещества нейтронной звезды составляет около миллиарда тонн.

На околоземной орбите насчитывается более 8 тысяч предметов, относящихся к космическому мусору.

С каждым годом Луна удаляется от Земли на 3,8 сантиметров.

Если бы кому-то удалось поместить Сатурн в гигантский резервуар с водой, планета осталась бы плавать на поверхности (по расчётам астрономов плотность Сатурна составляет всего 0,687 г/см³, что меньше плотности воды).

Астрономия и астрология о звездах

Вы когда-нибудь поддавались заманчивому искушению прочитать свой гороскоп в газете в воскресенье утром? Наверняка такое с вами случалось.

Вы когда-нибудь поддавались заманчивому искушению прочитать свой гороскоп в газете в воскресенье утром? Наверняка такое с вами случалось. Для большинства из нас это простое любопытство, позволяющее узнать, что предвещает нам грядущий день согласно знаку зодиака, под которым вы родились. Иногда мы забываем, что астрологический прогноз – это не просто набор ничего не значащей информации, а результат использования знаний очень древней науки, называемой астрологией. Она оказала мощное влияние на многие культуры народов, живших еще до нашей эры.

Сегодня астрологию большинство людей не воспринимают как полноценную науку, считая ее знания мертвыми, а выводы пустой болтовней для развлечения народных масс. Всему виной обилие газетных прогнозов и гороскопов на телевидении, составленных дилетантами. Они пытаются убедить нас, что могут предсказать будущее, подсказать технологии обретения счастья, помочь излечить наши беды благодаря использованию тайн астрологии.

Если вы любите астрономию, вы в курсе различий между астрономией и астрологией, но простому обывателю эта разница не понятна. Существуют свидетельства, что в ранних цивилизациях эти две дисциплины шли рука об руку, и ни у кого не возникало сомнения относительно прогнозов, составленных астрологами. Кстати, при дворах королей и у знатных вельмож далекого и не совсем далекого прошлого всегда имелся штат придворных астрологов. Без их советов не обходились в бытовых вопросах, ими пользовались для решения государственных дел. Главное, чтобы астролог имел высокую квалификацию и природный дар, иначе можно было оказаться на гильотине по причине неверно составленного гороскопа.

В давние времена астрологию считали религиозной стороной астрономии. Что изменилось с тех пор? Наиболее значительный сдвиг, который привел в движение аппарат по разделению двух направлений мысли, начался в первом веке, когда Птолемей написал самую первую книгу по астрологии под названием «Тетрабиблос». На страницах математического трактата, состоящего из четырех книг, признанных древнейшим пособием по астрологии, Клавдий Птоломей предлагал считать астрономию отдельной от астрологии наукой. Это был довольно революционный фолиант для тех времен. Книга стала первым научным документом, в котором автор предполагал, что Земля не является центром Вселенной, а астрономия должна быть сосредоточена строго на наблюдении и регистрации событий в космосе.

На протяжении следующих 2000 лет был пройден большой путь. Со времени Птолемея произошло полное разделение науки и религии, астрономия за это время достигла огромных успехов благодаря ежегодным открытиям. Так что Птолемей был бы по-настоящему изумлен, узнав о феноменальных достижениях астрономии.

Самым большим разногласием между приверженцами астрологии и астрономии можно назвать утверждение астрологов, что положение звезд влияет на события в нашей жизни. Но ведь мы знаем, что погода, приливы и отливы, а также другие важные аспекты нашей жизни подвержены влиянию небесных тел, особенно Луны. Почему звезды не могут влиять на события личной жизни? Все дело в том, что природные явления полностью объясняются научными законами, а не влиянием мистических сил. Поэтому не стоит путать два подхода к движению звезд и планет – астрономический с астрологическим.

Не стоит также уменьшать достижения астрологии, ее прогнозы основаны тоже на движении небесных объектов, но в сочетании с опытом многовековых наблюдений за этим влиянием на людей. Поскольку обе науки идут разными путями, незачем перемешивать их выводы, а тем более скептически относиться к составленным именно специалистами астрологии гороскопам.

Если прочитанный в прессе гороскоп не соответствует событием вашей жизни, это не повод считать астрологов обманщиками. Все дело в том, что общие прогнозы составляются для большого диапазона дат, а истинно правдивым может быть только гороскоп, составленный для конкретного человека по его личным данным – дата и место рождения, вплоть до минут и другие важные данные. Поэтому не стоит огульно ругать древнюю науку, лучше обратитесь к профессионалам или не принимайте близко к сердцу общие прогнозы. Отнеситесь к астрологии с уважением.

Почему орбиты планет находятся в одной плоскости

Орбиты планет, оказывается, лежат почти в одной плоскости. Орбиты эти почти круговые, а точнее даже эллиптические.

Орбиты планет, оказывается, лежат почти в одной плоскости. Орбиты эти почти круговые, а точнее даже эллиптические. Кроме того, направления вращения у многих планет вокруг своей оси аналогично направлению, в котором они движутся вокруг солнца. Существуют также исключения, а именно Уран и Венера. К тому же не все спутники крутятся вокруг планет в таком же направлении, в котором планеты вращаются вокруг Солнца.

Как оказалось, не так уж просто создать единую теорию, которая бы описывала все эти факты с равной степенью достоверности. Вопрос о том, каким образом могла появиться система, подобная нашей Солнечной системе, очень долго был главной проблемой космогонии. Скорее всего, общая плоскость эклиптики связана с тем, «строительным материалом» для планет и Солнца когда-то был единый материал, и он, вероятно, вращался именно вокруг своей оси. Затем по каким-то причинам этот материал разделился пополам на равные части, сохранившие направление своего первоначального вращения. Большая часть этого материала превратилась в шар Солнце, а та, что меньше стала диском вокруг него. З этого диска и появились планеты, что и является ответом на вопрос, почему плоскости вращения планет вокруг Солнца почти совпадают.

Движение солнечной системы во вселенной

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.
Но сама по себе цифра скучна, да и сейчас, когда на обочине науки устраивают шабаш адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики — это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть — это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). «Туловище» Лебедя примерно совпадает с галактической плоскостью.
Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика — это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

Разбегающиеся звезды
Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

Оттуда же

Дальше пошла нормальная научная работа — уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

Еще дальше
Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной — произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя.

Сатурн и его система

Кольца Сатурна.

Кольца Сатурна.
Мы находимся в тропосфере Сатурна, под самыми красивыми кольцами нашей планетной системы. Это одно из самых экстраординарных мест Солнечной системы. Белые кольца из льда, которые поднимаются на высоту 75 000 км. над головой. Блеск этих колец освещает всё, что нас окружает. По небу в изобилии разбросаны светящиеся полумесяцы — это спутники Сатурна. Свет Солнца на закате рассеивается среди кристаллов аммиака, порождая красивейшие оптические иллюзии, такие как «паргелии» (ложные солнца).

Атмосфера Сатурна.
Вид на кольца Сатурна из его атмосферы.
Скорость ветра в атмосфере Сатурна достигает 1600-1700 км/час, это намного больше чем на Юпитере. Ураганы здесь бушуют десятилетиями без остановок, но в силу своих особенностей, в атмосфере Сатурна не возникает таких устойчивых вихревых образований как на Юпитере.

Бури на Сатурне.
Ураганы на Сатурне имеют свою структуру. Они развиваются как длинная турбулентная зона белого цвета в атмосфере, так называемые «Белые пятна Сатурна». В особо сильных случаях, по мере вращения планеты они могут поймать сами себя за хвост (как на фотографии).

Фото, сделанное зондом "Кассини" в начале 2011 года. При этом приборы фиксировали до 10 вспышек молний в секунду, порождаемых этим штормом.

Полярные сияния на Сатурне.

Что касается достопримечательностей Сатурна, то нужно обязательно упомянуть его полярные сияния, порождаемые взаимодействием магнитного поля планеты и солнечного ветра (заряженных частиц), по такому же принципу как на Земле.

Полярное сияние на южном полюсе Сатурна. Фото сделано зондом "Кассини".

Затмение Сатурна.

Во время своих путешествий по системе Сатурна, межпланетный зонд «Кассини» не раз попадал в тень планеты. То есть, можно сказать наблюдал затмение Солнца Сатурном. Одно из таких затмений вы можете видеть на фото ниже. Такие снимки помогли учёным открыть ранее неизвестные кольца.

Я думаю, для космических туристов будущего, Сатурн и его система станет одним из излюбленных мест для посещения, так как по своей красоте эта планета настоящий шедевр природы и просто жемчужина в планетной коллекции Солнца.

Мимас спутник Сатурна.
Продолжаем путешествие по достопримечательностям Солнечной системы, но не спешим прощаться с Сатурном и его спутниками. В принципе, эту систему можно исследовать до бесконечности.

Заглянем на спутник Сатурна Мимас. Отважные космические альпинисты, которые когда-нибудь вберутся на вершину горы в центре кратера Гершель (диаметр 130 км.), увидят поистине захватывающую картину — с вершины высотой в 6 км. видны края кратера высотой около 5 км., а в небе висит огромный Сатурн со своими кольцами.

Мимас.

Этот небольшой спутник называют так-же «Звездой смерти» за его сходство со «Звездой смерти» из фильма «Звёздные войны».
Этому небольшому спутнику в своё время очень не повезло, как видно на фото огромную часть его поверхности занимает кратер Гершель. Это след от столкновения с астероидом, который если бы был немного побольше, разбил бы эту мини-планету вдребезги. Если Мимас увеличить до размеров Земли, то диаметр этого кратера был бы равен 4000 км. Остаётся удивляться, как Мимасу удалось выжить в этой катастрофе.

Гейзеры Энцелада.
Мы всё ещё в системе Сатурна, Энцелад — один из его спутников. Всего у Сатурна на данный момент известно более 50 спутников. В этом обзоре я не стану описывать их все, но Энцелад стоит того, чтобы его упомянуть, так как я в этом посте смотрю на Солнечную систему глазами космического туриста и меня привлекает прежде всего зрелищность картины..

Гейзеры на Энцеладе.

Струи гейзеров высотой более ста километров в которых вода моментально превращается в ледяную пыль, искрящуюся в слабых лучах Солнца. По непонятным пока причинам этот небольшой (500 км) спутник имеет горячее ядро, которое разогревает герметичное озеро, находящееся под его поверхностью в районе южного полюса. Разогретая вода вырывается на поверхность в виде гейзеров, причём на очень большую высоту, так как сила гравитации здесь примерно в 100 раз меньше земной.

Выбросы водяного пара на поверхность Энцелада.

Благодаря постоянным выбросам водяного пара, поверхность Энцелада полностью покрыта инеем, из-за чего этот спутник похож на снежную лепёшку. Возможно, это самое «белое» тело Солнечной системы, его поверхность отражает практически 100 % света.
Приборы межпланетного зонда «Кассини» зарегистрировали у Энцелада разряжённую атмосферу, которая в основном состоит из водяного пара плюс молекулярный водород, азот и простые органические соединения. Существование соединений углерода и подповерхностной жидкой воды на этом спутнике теоретически могло бы привести к возникновению здесь примитивной жизни (приблизительно такая же ситуация наблюдается на Европе — спутнике Юпитера).

Энцелад и хвост из водяного пара. Кольцо Е Сатурна.

Ещё один интересный момент. Гейзеры Энцелада своими выбросами пополняют кольцо Е Сатурна (одно из самых внешних), оставляя за ним хвост. Этот снимок был сделан, когда Солнце находилось позади Сатурна, в других ракурсах этого хвоста из водяного пара за Энцеладом не было видно.

9 уникальных фактов о галактике Андромеда

Ближайшей соседней к Млечному Пути галактикой является Андромеда. Она существенно больше в размерах нашей галактики и по разным оценкам может иметь в 2,5-5 раз больше звезд, чем наш Млечный Путь.

Ближайшей соседней к Млечному Пути галактикой является Андромеда. Она существенно больше в размерах нашей галактики и по разным оценкам может иметь в 2,5-5 раз больше звезд, чем наш Млечный Путь. Ее можно легко разглядеть на ночном небе с Земли. Она расположена в созвездии Андромеды, благодаря чему собственно и получила свое название.

Галактика Андромеды привлекает внимание ученых далеко не одно столетие. Первое письменное упоминание об этой галактике содержится в «Каталоге неподвижных звёзд» персидского астронома Ас-Суфи (946 год), описавшего её как «маленькое облачко». Интерес к ней обусловлен не только ее близким соседством с нами, но и некоторыми другими интересными особенностями, о которых мы сегодня и поговорим.

  1. Галактика получила свое имя благодаря созвездию Андромеды
    Увидеть созвездие Андромеды на ночном небе можно между астеризмом Большой квадрат и звездой α Кассиопеи (второй нижний угол, если наблюдатель видит созвездие Кассиопеи в виде буквы W). Согласно древнегреческим мифам, принцесса Андромеда, жены греческого героя Персея, после смерти превратилась в созвездие. Созвездие впервые было включено в каталог звёздного неба Клавдия Птолемея «Альмагест». Другие звезды созвездия (Персей, Кассиопея, Кит и Цефей) также получили свои имена в честь персонажей этого мифа.

Созвездие Андромеды является также домом и для других многочисленных объектов. Оно расположено вне галактической плоскости и не содержит кластеров или туманностей Млечного Пути. Однако в нем содержатся другие видимые галактики. Одной из них как раз является галактика Андромеды.

  1. Она больше Млечного Пути
    В астрономии часто используется понятие световой год, с помощью которого определяют расстояние до тех или иных объектов, но некоторые астрономы предпочитают использовать термин парсек. Когда речь идет о совсем больших расстояниях, то используется термин килопарсек, равный 1000 парсекам, а также мегапарсек – эквивалент 1 миллиону парсеков. Млечный Путь простирается примерно на 100 000 световых лет, или 30 килопарсеков. На первый взгляд это может показаться очень большим расстоянием, но на самом деле на фоне других галактик наша выглядит скорее маленькой.

Приблизительный диаметр галактики Андромеда составляет 220 000 световых лет, что более чем в два раза больше Млечного Пути. Она самая большая галактика в местной группе. Если бы галактика Андромеды была еще ярче, то на ночном небе она могла бы выглядеть больше Луны, даже несмотря на то, что находится гораздо-гораздо дальше. К слову, о расстоянии: галактика расположена примерно в 9,5 триллиона километров от Земли (Луна, напомним, находится всего в 384 000 километров).

  1. Содержит триллион звезд
    Согласно приблизительным подсчетам, Млечный Путь может содержать от 100 до 400 миллиардов звезд. Но это ничто в сравнении с Андромедой, в которой может содержаться около одного триллиона. Благодаря космическому телескопу «Хаббл» ученые узнали о наличии среди этого триллиона очень большой и редкой популяции горячих и ярких звезд.

Горячие, молодые звезды, как правило, выглядят синими. Однако синие звезды, обнаруженные в галактике Андромеды, выглядят скорее стареющими, больше похожими на Солнце, звездами, которые выжгли свои внутренние слои и обнажили свои горячие синие ядра. Они разбросаны по всему центру галактики и в ультрафиолетовом диапазоне являются самыми яркими.

  1. Имеет двойное ядро
    Еще одним интересным фактом о галактике Андромеды является ее двойное ядро. Наблюдения показали, что в центральной части галактики находятся два ярких объекта (P1 и P2), разделенных расстоянием всего в 5 световых лет. В каждом из них содержатся несколько миллионов плотно расположенных друг от друга молодых синих звезд.

Позже астрономы выяснили, что два ядра представляют собой не два отдельных скопления звезд, а скорее одно скопление в форме бублика и сверхмассивную черную дыру, масса которой превышает 140 миллионов масс Солнца. Звезды в скоплении P1 обращаются очень близко вокруг черной дыры, словно планеты вокруг Солнца, за счет чего создается эффект наличия двойного ядра.

  1. Столкнется с нашей галактикой
    Нас ожидает межгалактический коллапс. В настоящий момент галактика Андромеды движется в сторону Млечного Пути со скоростью 400 000 километров в час. При такой скорости земной шар можно облететь всего за 6 минут. Астрономы предрекают, что примерно через 3,75 миллиарда лет произойдет столкновение Млечного Пути и Андромеды. Что же будет с Землей после этого?

Эксперты считают, что, несмотря на столь масштабное событие, Земля все-таки выживет. Вместе с остальной Солнечной системой. Ученые предполагают, что наша планета практически не пострадает от этого межгалактического коллапса, так как обе галактики имеют очень много свободного пространства. Тем не менее с Земли наблюдать за событием будет очень интересно (если, конечно, жизнь к тому моменту на ней еще сохранится). Обе галактики будут притягиваться друг к другу до тех пор, пока черные дыры, находящиеся в их центрах, в конечном итоге сольются в одну. Как только это произойдет, наша Солнечная система станет частью совершенно другой галактики – эллиптической. Если Солнце не поглотит Землю примерно через 5 миллиардов лет, то каждая ночь на ней будет очень яркой, благодаря наличию множества новых звезд. Вместо полоски света Млечного Пути, мы будем видеть более сфероидальный источник света.

  1. Имеет абсолютную величину в 3,4
    В астрономии абсолютной величиной характеризуется светимость астрономического объекта. Она позволяет нам определить яркость любого объекта, независимо от его расстояния до нас.

Галактика Андромеды обладает абсолютной величиной 3,4, что позволяет ей являться самым ярким объектом каталога Мессье. В безлунную ночь галактика видна даже невооруженным глазом. Правда стоит отметить, что невооруженным глазом будет видна только центральная часть галактики. Она будет выглядеть как тусклая звезда. Если смотреть на нее в бинокль, то она будет выглядеть как маленькое эллиптическое облако. Если вести за ней наблюдение в большой телескоп, то она может выглядеть до шести раз больше Луны.

  1. В ней полно черных дыр
    Когда-то в галактике Андромеды имелось 9 известных черных дыр, но фактическое их число выросло до 35 в 2013 году. Астрономы провели наблюдение за 26 новыми кандидатами в черные дыры, что сделало галактику одной из самых густонаселенных подобными объектами. Большинство из этих новых черных дыр обладают массой, в 5-10 раз превосходящей массу нашего Солнца. Семь черных дыр расположены на расстоянии примерно в 1000 световых лет от галактического центра.

Астрономы уверены, что в будущем они смогут обнаружить в этой галактике еще больше таких объектов. Например, в 2017 году было обнаружено еще две новые черные дыры. Тогда же было отмечено, что оба объекта находятся в самой опасной из когда-либо документированной близости. Их разделяет расстояние всего в 0,01 светового года, что примерно равно паре сотен расстояний от Земли до Солнца. По оценкам экспертов, эти черные дыры могут столкнуться друг с другом менее чем через 350 лет, слившись в одну сверхмассивную черную дыру.

  1. Содержит 450 шаровых скоплений
    Шаровые скопления представляют собой плотно упакованные скопления старых звезд, тесно связанных гравитацией. В них могут находиться сотни тысяч и даже миллионы звезд. Шаровые скопления помогают определять возраст Вселенной, а также нередко помогают определять, где находится центр галактики. В Млечном Пути астрономы обнаружили как минимум 200 шаровых скоплений, в Андромеде — около 450.

Количество шаровых скоплений у Андромеды может быть гораздо больше, однако дальние рубежи этой галактики по-прежнему остаются малоизученными. Если бы шаровые скопления галактики Андромеды имели аналогичные размеры скоплений Млечного Пути, то их реальное число могло бы составлять что-то среднее между 700 и 2800.

  1. Когда-то галактика Андромеды считалась туманностью
    Туманности представляют собой огромные скопления газа, пыли, водорода, гелия и плазмы, в которых рождаются новые звезды. Очень удаленные от нас галактики нередко ошибочно принимались за эти массивные скопления. В 1924 году астроном Эдвин Хаббл объявил, что спиральная туманность Андромеды на самом деле является галактикой и Млечный Путь не является единственной галактикой во Вселенной.

Хаббл обнаружил некоторое число звезд, принадлежащих галактике Андромеды, включая несколько цефеид. Последние представляют собой класс пульсирующих переменных звёзд с довольно точной зависимостью период—светимость. Он определил, насколько далеко находятся эти звезды, что помогло ему рассчитать расстояние, на котором находилась галактика Андромеда от нас. Оно составило 860 000 световых лет, что более чем в 8 раз больше расстояния до самых далеких от нас звезд Млечного Пути. Это помогло доказать, что Андромеда является именно галактикой, а никак не туманностью, как это было изначально предложено. Позже Хаббл подтвердил существование еще нескольких десятков других галактик.

История древних обсерваторий

Обнаруженные по всему миру обсерватории говорят о том, что древние цивилизации вели удивительно точные астрономические наблюдения.

Обнаруженные по всему миру обсерватории говорят о том, что древние цивилизации вели удивительно точные астрономические наблюдения. Благодаря правильному определению движения небесных светил, учёные прошлого могли вести счёт времени и заниматься астрологическими прогнозами.

Древние астрономы также придумали календарь для ведения сельскохозяйственных работ. С помощью самых простых приборов они определяли, что Луна, Солнце и другие космические тела движутся по сложнейшей траектории. Кроме того, отмечались солнечные и лунные затмения, определялись появления новых звёзд и даже предсказывались катастрофы. В прошлых веках, точно как и сейчас, обсерватория служила для сбора информации, была мастерской и хранилищем ценных приборов.

Совсем недавно учёные сделали вывод, что многие памятники древней архитектуры имели цель наблюдать за небесными светилами. Подобные сооружения изучает довольно молодая наука — археоастрономия, совмещающая два направления – археологию и астрономию. Древнейшие солнечные обсерватории были найдены во всём мире: Америке, Азии, Европе и Африке.

Необычная обсерватория «Эль-Караколь»

Это сооружение было возведено приблизительно в 900 г нашей эры, когда знания цивилизации майя находились на высшем уровне. Главным предназначением обсерватории было наблюдение за перемещением одной из планет солнечной системы — Венерой. Это удивительно, ведь основными объектами исследований того времени являлись Солнце и Луна. Почему же тогда именно для красной планеты была возведена такая огромная обсерватория? Как оказалось, у народности майя Венера считалась священной. Её называли планетой войны, а также сестрой верховного божества Кукулькана. Учёным удалось выяснить, что майя совершенно точно определили круговорот планеты – 584 дня. Отметки, обнаруженные учёными в «Эль-Караколь», свидетельствуют об обширных знаниях древних астрономов. Местные жители были знакомы с происхождением 20 из 29 главных для своей территории астрономических явлений.

Необычное строение находится на территории Мексики в самом древнем культурном центре индейцев майя и тольтеков. В переводе с испанского название обсерватории переводится как «улитка». Оно появилось в результате схожести внутренней винтовой лестницы с раковиной моллюска. Обсерватория имеет башню и небольшие окна, которые «смотрят» на определённые космические объекты. Возможно, этим и объясняется ассиметричное расположение окон, которое изначально входило в проект. Данное сооружение является самым большим из найденных подобных комплексов на полуострове Юкатан.

Сооружение обсерватории «Эль-Караколь» хорошо сохранилось, несмотря на все тяготы прошедших тысячелетий, и считается высочайшим достижением архитектуры цивилизации майя. Возможно, именно в ней был составлен календарь майя, который заканчивался 2012 годом, в последствие трактуемым как «конец света». Здесь велись наблюдения за ночным небом, делались астрономические вычисления, предсказывались солнечные затмения, равноденствия, а также фазы Луны.

На сегодняшний день верхняя часть башни разрушилась, и обсерватория стала напоминать сооружение с куполом. Однако эта постройка была возведена в форме цилиндра и астрономы древности перемещались по обсерватории между смотровыми окошками, наблюдая за звёздным небом.

История древней европейской обсерватории «Макотржаский квадрат»

Эта постройка была обнаружена археологами в Чехословакии в 1961 году. Её возраст составляет приблизительно 5,5 тыс. лет. Учёные не могут объяснить, как жители того времени были знакомы с теоремой, которая спустя сотни веков получила название «Теорема Пифагора». Астрономы древности использовали в своих вычислениях единую меру длины, которую сегодня называют мегалитическим ярдом. Составлялись также календари и делались сложные вычисления движений космических объектов.

Учёные, воспользовавшись протонным магнитометром в исследовании, обнаружили, что найденное строение датировалось концом каменного века и имело форму квадрата. В западной и восточной его частях располагались ворота. Все прямые линии, соединяющие выход в восточной стороне квадрата и его южную часть, имеют длину 302 м. Это является числом в 365 мегалитических ярдов, а один ярд равен 0,83 м (средний человеческий шаг). Таким образом, 365 ярдов может указывать на количество дней в году.

Современные астрономы увидели ещё одну интересную деталь в «Макотржаском квадрате»: если провести линию, проходящую через центры западных и восточных ворот, то она будет указывать на место, где 6 тыс. лет назад заходила Бетельгейзе — ярчайшая звезда в созвездии Ориона. Линия от прямоугольника до середины восточных ворот показывала место северного восхода Луны, наблюдавшегося каждые 18 лет. А линия из восточных ворот квадрата к юго-западному углу указывала на точку летнего солнцестояния.

Собирая все эти факты, учёные пришли к выводу: «квадрат» был построен не «новичками», а людьми, прекрасно знающими геометрию и астрономию. Однако на сегодняшний день не все тайны «Макотржаского квадрата» разгаданы специалистами. По мнению учёных, эта обсерватория является одной из самых древних, найденных на территории Европы.

Гозекский круг: одна из древнейших обсерваторий планеты

Это древнее сооружение было найдено случайно в 1991 году на территории Германии. Пролетая на самолёте над пшеничными полями, представители земельного управления увидели несколько круглых знаков и сообщили о находке в один из местных университетов. Однако только в 2002 году специалисты приступили к раскопкам сооружения.

Исследуя Гозекский круг, учёные пришли к заключению, что он является уникальным во всех отношениях. Эта масштабная по площади конструкция была нацелена на определение летнего и зимнего солнцестояния. И хотя сегодня об основном предназначении круга известно, всё же остаётся много неразгаданных моментов.

Гозекский круг имеет вид нескольких круговых рвов внушительных размеров с размещёнными по периметру тремя воротами. Через них в определённые дни проходил солнечный свет. Ежегодно в самый короткий день лучи восходящего небесного светила проникали точно по центру небольших ворот обсерватории. Археологи считают, что её построили жители каменного века. В диаметре древнее святилище имеет 75 м и опоясано деревянными кольцами из двух рядов высотой 3 м.

Хотя обсерватория была построена земледельцами, которые населяли эту равнину, всё говорило о них, как о способных личностях, разбирающихся в математике и астрономии. Некоторые учёные утверждают, что найденное сооружение являлось не только обсерваторией. На её территории проводились магические ритуалы, которые современным исследователям не удаётся расшифровать.

Необычная находка изначально состояла из 4 кругов, одного кургана, рвов и ворот, расположенных на северном, юго-восточном и юго-западном направлениях. Однако для наблюдения за движением Солнца жрецы пользовались только двумя воротами. Для каких целей использовались третьи – остаётся загадкой. Фрагменты керамики, найденные на месте раскопок, только подтверждают, что обсерваторию построили около 7 тыс. лет назад. Кроме того, астрономы использовали её для создания лунного календаря, имеющего отношение к земледелию.

Ещё одним интересным фактом стала находка останков зверей и обезглавленных человеческих скелетов, чья плоть была скребками содрана с костей. Возможно, здесь имели место кровавые жертвоприношения. Никаких следов стихийных бедствий, катастроф, войн или эпидемий на месте раскопок не обнаружили. Поэтому для учёных остаются загадкой причины, по которым святилище было брошено.

Спустя некоторое время вблизи Гозека археологи нашли диск, который являл собой отображение космологических представлений о мире того времени. Специалисты не сомневаются, что находка с изображениями космоса является результатом труда древних астрономов, наблюдающих за небесными светилами и другими звёздными объектами не одну сотню лет.

Какие бы цели не преследовали древние астрономы, построившие подобные обсерватории, их сооружения остаются для современного человека настоящим чудом. Простой с архитектурной точки зрения, но в то же время сложный по функциям памятник архитектуры, является гениальным замыслом древних цивилизаций.

Чёрные дыры разрушают квантовые законы

Они возникают, когда реальность выдаёт критическую ошибку: слишком много вещества в одном месте силой собственной гравитации портит и само вещество, и место, в котором оно находится.

Они возникают, когда реальность выдаёт критическую ошибку: слишком много вещества в одном месте силой собственной гравитации портит и само вещество, и место, в котором оно находится.

Обычно гравитация в нашей Вселенной играет роль заботливого старшего брата, который всегда приберёт за младшим разбросанные игрушки. Но в случае с чёрными дырами гравитация превращается в форменного Аль Капоне, который сначала созывает на встречу все фундаментальные законы бытия, а потом устраивает настоящую мясорубку с их участием. Чёрные дыры не только разрушают материю, они разрушают квантовые законы, формирующие эту материю, сжимая её до состояния ничтожной крупицы, пока та перестанет излишне существовать. Словом, чёрные дыры просто игнорируют реальность.
Хотя большинство людей считают их чем-то вроде «санитаров космоса», это бесконечно далекое от реальности представление. Мы собрали факты, которые избавят вас от этого заблуждения.

Это самые яркие объекты в небе
Все знают, что даже свет не может покинуть поверхности чёрной дыры, из-за этого их и воображают чем-то вроде открытого посреди космоса канализационного люка. Между тем «чёрная дыра» – это всего лишь образное название, на самом деле зачастую они являются ярчайшими небесными объектами.
Мы забываем, что кроме горизонта событий, за который свет действительно не может вырваться, есть ещё и вся остальная Вселенная, и что вращающаяся чёрная дыра поглощает материю вокруг, закручивая вещество, словно водоворот.
Когда газовое облако «падает» в чёрную дыру, вещество сжимается давлением, резко уменьшаясь в объёме и нагреваясь от трения. И, подобно метеору в атмосфере, газ вокруг чёрной дыры начинает натурально гореть. Причём, он накаляется даже не добела – он начинает испускать рентгеновское излучение, перерабатывая 10% своей совокупной массы в чистую энергию. Для сравнения термоядерные боеголовки перерабатывают в энергию лишь 5% своей массы. Вы оценили? Бросьте что-то в чёрную дыру, и вы получите в 2 раз больше энергии, чем при термоядерном взрыве.

Они устраивают взрывы галактического размаха
Чёрные дыры создают самое мощное гравитационное ускорение, и они же являются самыми тяжёлыми объектами нашего мироздания. Столкнуть одну с другой равнозначно тому, если бы вы попытались взломать компьютер самого создателя, хотя в нашей галактике такое столкновение уже произошло.
На снимке выше два космических взрыва, разрастающихся пузырями высокоэнергетических частиц. Насколько они большие? Ну, вот эта полоска пыли посередине – наша галактика Млечный Путь, а диаметр каждого из пузырей – 25 000 световых лет. Сейчас они покрывают половину видимого неба, а расширяться начали, по всей видимости, миллионы лет назад. Эти изображения специально сделаны цветными – на самом деле розовым цветом на них отмечено гамма-излучение. Учёные предполагают, что эти пузыри возникли, когда неизвестная карликовая галактика спикировала на Млечный путь, и её центральная чёрная дыра проиграла нашей вчистую, хоть и наделала в нашей галактике дел, словно слон в посудной лавке.

Их миллионы
Ярчайшие чёрные дыры с активным ядром называются квазарами. Они не только самые яркие объекты в своих галактиках – они ярче, чем все остальные звезды в них вместе взятые. Маяки указывают морякам места, от которых лучше держаться подальше, но они же и обозначают ключевые для навигации точки. Так и чёрные дыры являются прекрасными маркерами, позволяющими нам строить карты нашей Вселенной. Принимая чёрные дыры за самых жутких космических монстров, люди полагают их редкостью. И зря: внутри практически каждой галактики существует сверхмассивная чёрная дыра. 2,5 миллиона – вот число активно поглощающих вещество чёрных дыр, обнаруженных инфракрасным телескопом WISE. Они просто-таки окружают нас.

Они постоянно производят антиматерию
Вселенная постоянно порождает пары частица-античастица, которые, возникнув, тут же аннигилируют друг друга, производя выброс гамма-излучения, причём, делают это столь быстро, что принцип неопределенности Гейзенберга даже не успевает подействовать.
Но если эта виртуальная пара частица-античастица достигает горизонта событий, одну из них втягивает в чёрную дыру, а другая становится свободной. Всё это могло бы стать отличным текстом психоделической песни, если бы не было описано одним из умнейших людей на планете – Стивеном Хокингом.
Поскольку то, какая частица «сбегает» из чёрной дыры определяется случайно, так называемое излучение Хокинга предполагает, что за горизонтом событий оказывается смесь частиц-античастиц в пропорции 50 на 50 в непрерывном потоке самоаннигиляции.

Они могут взрываться
Даже чёрным дырам приходиться платить за нарушение всех правил нашей Вселенной – закон сохранения энергии действует и на них. Впрочем, надо оговориться: большим чёрным дырам всё нипочем, излучение Хокинга забирает слишком незначительную часть их массы. Но для небольших дыр это катастрофа – они испускают больше энергии, чем поглощают. И тогда чёрная дыра взрывается. Но не стоит беспокоиться – если дыра настолько мала, чтобы взорваться, то она почти неспособна ничего разрушить при этом.

Они стреляют «лучами смерти»
Чёрные дыры прожорливы как Пэкмен, и если они так же зачистят нашу Вселенную от всего остального, нам только останется надеяться, что творец придумал следующий уровень. Но это и так хорошо известно, а вот что вы едва ли знаете: чёрные дыры могут стрелять высокоэнергетическими лучами межгалактических масштабов.
Когда чёрная дыра поглощает материю, вращающуюся вокруг её экватора, полюса выбрасывают в пространство плазменные струи, называемые джетами, со скоростью близкой к скорости света.

Великие астрономические открытия мира

Земля и Солнце не являются центром Вселенной

Земля и Солнце не являются центром Вселенной
Ранние верования (в зависимости от религий) часто указывали Землю центром Вселенной. Но когда первые астрономы наблюдали небо, они не понимали многих вещей. Почему Марс, например, иногда меняет свой курс в небе, а затем снова начинает маршировать в том же направлении, что и другие планеты? Некоторые астрономы придумали сложные геометрический построения — эпициклы — которые должны были предсказывать хаотическое, на первый взгляд, движение планет.
Простое решение было предложение Николаем Коперником в 1500-х годах, когда он поставил Солнце в центр Вселенной, а Землю пустил вращаться вокруг него, подобно другим планетам. (В третьем веке это также предлагал Аристарх Самосский из Греции, но его труды не были хорошо известны в западном мире на тот момент). Такая расстановка решала проблему эпицикла и подкреплялась другими свидетельствами. К примеру, открытие Галилеем спутников Юпитера в 1610 году показало, что не все вращается вокруг Земли. Религиозные власти были недовольны, но со временем все встало на свои места.
По мере развития телескопических технологий, мы узнали также, что и Солнце не является центром Вселенной. В 1750-х годах считалось, что Млечный Путь — это большая коллекция звезд со своим собственным центром. К началу 1900-х наблюдения новых звезд в других галактиках показали, что они были дальше, чем Млечный Путь. Наконец, астроном Эдвин Хаббл обнаружил доказательства того, что Вселенная расширяется равномерно во всех направлениях, не имея истинного центра.

За Сатурном есть планеты
Телескоп показал множество мелких объектов, недосягаемых невооруженному глазу. Уильям Гершель открыл Уран в 1781 году случайно, когда каталогизировал все звезды, которые мог найти, восьмой величины или ярче. Тогда-то он и нашел Уран, движущийся на фоне звезд. Он планировал назвать его в честь короля Георга III, но другие астрономы решили назвать планету в честь бога, как и остальные.
За этим открытием стремительно последовали другие: Церера (тогда ее назвали астероидом, а не карликовой планетой) была обнаружена в 1801 году. Нептун в 1846, а Плутон (сначала ставший планетой) в 1930 году. Солнечная система оказалась куда более большим местом, чем думали раньше. Со временем модели позволили предположить, что кометы обитают за пределами орбиты Нептуна среди других ледяных объектов — в поясе Койпера. В начале 2000-х несколько новых объектов размером с Плутон были обнаружены в поясе Койпера, что позволило Международном астрономическому союзу создать новую категорию объектов — «карликовые планеты» — и поместить Плутон и Цереру в эту категорию.
Не менее поразительным стало открытие планет за пределами нашей Солнечной системы. Сначала астрономы нашли три планеты возле пульсара PSR B1257+12 в 1992 году, потом крупную экзопланету возле звезды главной последовательности 51 Пегаса в 1995 году. Сегодня мы знаем о существовании более 1000 планет за пределами Солнечной системы, и еще тысячи ожидают своего часа. Большую их часть обнаружил космический телескоп NASA Кеплер, запущенный в 2009 году.

Вселенная расширяется (и все быстрее)
В 1929 году астроном Эдвин Хаббл обнаружил, что Вселенная расширяется. Он был старательным и прилежным наблюдателем со своим 100-дюймовым телескопом на горе Вильсон в Калифорнии и сделал множество открытий вроде настоящих расстояний до галактик. Он вглядывался в новые звезды в этих галактиках, оценивал их яркость и затем рассчитывал, как сильно должна была тускнеть эта яркость с расстоянием. Затем, основываясь на работе астронома Весто Слифера, Хаббл измерил движение галактик и опубликовал работу, в которой окончательно показал расширение Вселенной.
Открытие было весьма громким, но еще больше астрономы удивились в конце 90-х годов прошлого века, когда обнаружили, что расширение ускоряется. Астрономы, измеряющие сверхновые в далеких галактиках, обнаружили, что эти сверхновые были менее яркими, чем предсказывали по их красному смещению (что указывает на то, что они удаляются от нас). Это открытие в конечном итоге принесло ученым Нобелевскую премию.

На других мирах есть вода и лед
Вода считалась одним из ключевых элементов для жизни, и со временем мы пришли к выводу, что это универсальный элемент в Солнечной системе и вообще во Вселенной. Первые наблюдения космических аппаратов в 1970-х и 80-х годах показали существование ледяных миров за пределами Земли. Открытие ледяных лун возле Юпитера, Сатурна и дальше стало сюрпризом, поскольку мы привыкли наблюдать безвоздушную Луну близ Земли. Со временем эти миры продемонстрировали сложный химический состав.
Европа, спутник Юпитера, и Энцелад, спутник Сатурна, считаются наиболее перспективными для жизни за пределами Земли, по крайней мере в Солнечной системе. Кроме того, вода может существовать в жидкой форме внутри этих лун. На Титане, спутнике Сатурна, много углеводородов, а под поверхностью может скрываться жидкий океан.
Более продвинутые наблюдения в 90-х годах и далее нашли водяной лед в самых неожиданных местах. Оказалось, водяной лед может быть на безвоздушной Луне и даже на Меркурии — ближайшей к Солнце планете — если лежит в постоянно закрытых от Солнца кратерах или под защитным слоем пыли. Полярные шапки, состоящие частично из льда, имеются на Марсе. Лед есть на кометах и на небольших мирах вроде карликовой планеты Церера.

Астрономы собрали изображение Млечного Пути

Ученые-астрономы из Рурского университета в Бохуме (Ruhr-Universitat Bochum), Германия, собрали воедино массу сделанных ими снимков и в результате этого получили огромный панорамный снимок нашей га

Ученые-астрономы из Рурского университета в Бохуме (Ruhr-Universitat Bochum), Германия, собрали воедино массу сделанных ими снимков и в результате этого получили огромный панорамный снимок нашей галактики, галактики Млечного Пути, размер которого равен 194 гигабайтам. Разрешающая способность этого снимка составляет 46 миллиардов пикселей, что делает его одним из самых масштабных астрономических изображений на сегодняшний день. И для того, чтобы все желающие получили возможность взглянуть на результаты их работы, ученые организовали специальный интерактивный онлайн-сервис, разделив исходное изображение на 268 отдельных секций. К сожалению, в связи с большим наплывом пользователей этот сервис работает нестабильно и вам, если вы тоже решите туда заглянуть, придется набраться немного терпения и не спешить со своими действиями.

При создании этого изображения группа, возглавляемая профессором Рольфом Кини (Rolf Chini), использовала снимки, собранные в ходе астрономических наблюдений, проводимых в течение пяти лет. Основной задачей этих наблюдений являлся поиск астрономических объектов, имеющих переменный уровень яркости их свечения. Такими объектами являются звезды, свет которых периодически затеняется другими космическими объектами, или системы, в состав которых входит две или большее количество звезд, которые, двигаясь по своим орбитам, периодически перекрывают свет друг от друга.

Для проведения этих наблюдений использовались телескопы университетской обсерватории, расположенной в пустыне Атакама в Чили. В результате этих наблюдений ученые нашли порядка 50 тысяч объектов с переменным уровнем яркости, которые до последнего времени не были зарегистрированы в любых каталогах и базах астрономических данных.

Обсерватория Рурского Университета в Бохуме. Пустыня Атакама, Чили. Фото: ruhr-uni-bochum.de

Как уже упоминалось выше, конечное изображение было разделено на 268 секций. Такое разбиение было выполнено не случайно, оно полностью соответствует порядку проведения астрономических наблюдений. Телескопы обсерватории производили наблюдения за каждым участком неба, соответствующим отдельной секции, в течение нескольких дней, производя снимки с использованием различных светофильтров. После съемки снимки анализировались и сравнивались, что позволяло зарегистрировать изменение яркости свечения некоторых астрономических объектов.

И, в конце концов, ученые при помощи специализированного программного обеспечения проделали поистине огромную работу, совместив воедино все имеющиеся у них снимки. И самое главное это то, что они не стали уподобляться «собаке на сене» и выложили результаты своей работы в открытый доступ, дав возможность посмотреть на глубины нашей галактики всем желающим.

Crea nuovo profilo